English 中文(简体)
PyBrain - Importing Data For Datasets
  • 时间:2024-11-03

PyBrain - Importing Data For Datasets


Previous Page Next Page  

In this chapter, we will learn how to get data to work with Pybrain datasets.

The most commonly used are datasets are −

    Using sklearn

    From CSV file

Using sklearn

Using sklearn

Here is the pnk that has details of datasets from sklearn:https://scikit-learn.org/stable/datasets/index.html

Here are a few examples of how to use datasets from sklearn −

Example 1: load_digits()


from sklearn import datasets
from pybrain.datasets import ClassificationDataSet
digits = datasets.load_digits()
X, y = digits.data, digits.target
ds = ClassificationDataSet(64, 1, nb_classes=10)
for i in range(len(X)):
ds.addSample(ravel(X[i]), y[i])

Example 2: load_iris()


from sklearn import datasets
from pybrain.datasets import ClassificationDataSet
digits = datasets.load_iris()
X, y = digits.data, digits.target
ds = ClassificationDataSet(4, 1, nb_classes=3)
for i in range(len(X)):
ds.addSample(X[i], y[i])

From CSV file

We can also use data from csv file as follows −

Here is sample data for xor truth table: datasettest.csv

CSV File

Here is the working example to read the data from .csv file for dataset.

Example


from pybrain.tools.shortcuts import buildNetwork
from pybrain.structure import TanhLayer
from pybrain.datasets import SupervisedDataSet
from pybrain.supervised.trainers import BackpropTrainer
import pandas as pd

print( Read data... )
df = pd.read_csv( data/datasettest.csv ,header=0).head(1000)
data = df.values

train_output = data[:,0]
train_data = data[:,1:]

print(train_output)
print(train_data)

# Create a network with two inputs, three hidden, and one output
nn = buildNetwork(2, 3, 1, bias=True, hiddenclass=TanhLayer)

# Create a dataset that matches network input and output sizes:
_gate = SupervisedDataSet(2, 1)

# Create a dataset to be used for testing.
nortrain = SupervisedDataSet(2, 1)

# Add input and target values to dataset
# Values for NOR truth table
for i in range(0, len(train_output)) :
   _gate.addSample(train_data[i], train_output[i])

#Training the network with dataset norgate.
trainer = BackpropTrainer(nn, _gate)

# will run the loop 1000 times to train it.
for epoch in range(1000):
   trainer.train()
trainer.testOnData(dataset=_gate, verbose = True)

Panda is used to read data from csv file as shown in the example.

Output


C:pybrainpybrainsrc>python testcsv.py
Read data...
[0 1 1 0]
[
   [0 0]
   [0 1]
   [1 0]
   [1 1]
]
Testing on data:
( out:  ,  [0.004 ] )
( correct: ,  [0 ] )
error: 0.00000795
( out:  ,  [0.997 ] )
( correct: ,  [1 ] )
error: 0.00000380
( out:  ,  [0.996 ] )
( correct: ,  [1 ] )
error: 0.00000826
( out:  ,  [0.004 ] )
( correct: ,  [0 ] )
error: 0.00000829
( All errors: , [7.94733477723902e-06, 3.798267582566822e-06, 8.260969076585322e
-06, 8.286246525558165e-06])
( Average error: , 7.073204490487332e-06)
( Max error: , 8.286246525558165e-06,  Median error: , 8.260969076585322e-06)
Advertisements