PyBrain Tutorial
Selected Reading
- PyBrain - Discussion
- PyBrain - Useful Resources
- PyBrain - Quick Guide
- PyBrain - Examples
- PyBrain - API & Tools
- PyBrain - Reinforcement Learning Module
- PyBrain - Connections
- PyBrain - Layers
- Training Network Using Optimization Algorithms
- PyBrain - Working with Recurrent Networks
- Working with Feed-Forward Networks
- PyBrain - Testing Network
- PyBrain - Training Datasets on Networks
- PyBrain - Importing Data For Datasets
- PyBrain - Datasets Types
- PyBrain - Working with Datasets
- PyBrain - Working with Networks
- PyBrain - Introduction to PyBrain Networks
- PyBrain - Environment Setup
- PyBrain - Overview
- PyBrain - Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
PyBrain - Importing Data For Datasets
PyBrain - Importing Data For Datasets
In this chapter, we will learn how to get data to work with Pybrain datasets.
The most commonly used are datasets are −
Using sklearn
From CSV file
Using sklearn
Using sklearn
Here is the pnk that has details of datasets from sklearn:
Here are a few examples of how to use datasets from sklearn −
Example 1: load_digits()
from sklearn import datasets from pybrain.datasets import ClassificationDataSet digits = datasets.load_digits() X, y = digits.data, digits.target ds = ClassificationDataSet(64, 1, nb_classes=10) for i in range(len(X)): ds.addSample(ravel(X[i]), y[i])
Example 2: load_iris()
from sklearn import datasets from pybrain.datasets import ClassificationDataSet digits = datasets.load_iris() X, y = digits.data, digits.target ds = ClassificationDataSet(4, 1, nb_classes=3) for i in range(len(X)): ds.addSample(X[i], y[i])
From CSV file
We can also use data from csv file as follows −
Here is sample data for xor truth table: datasettest.csv
Here is the working example to read the data from .csv file for dataset.
Example
from pybrain.tools.shortcuts import buildNetwork from pybrain.structure import TanhLayer from pybrain.datasets import SupervisedDataSet from pybrain.supervised.trainers import BackpropTrainer import pandas as pd print( Read data... ) df = pd.read_csv( data/datasettest.csv ,header=0).head(1000) data = df.values train_output = data[:,0] train_data = data[:,1:] print(train_output) print(train_data) # Create a network with two inputs, three hidden, and one output nn = buildNetwork(2, 3, 1, bias=True, hiddenclass=TanhLayer) # Create a dataset that matches network input and output sizes: _gate = SupervisedDataSet(2, 1) # Create a dataset to be used for testing. nortrain = SupervisedDataSet(2, 1) # Add input and target values to dataset # Values for NOR truth table for i in range(0, len(train_output)) : _gate.addSample(train_data[i], train_output[i]) #Training the network with dataset norgate. trainer = BackpropTrainer(nn, _gate) # will run the loop 1000 times to train it. for epoch in range(1000): trainer.train() trainer.testOnData(dataset=_gate, verbose = True)
Panda is used to read data from csv file as shown in the example.
Output
C:pybrainpybrainsrc>python testcsv.py Read data... [0 1 1 0] [ [0 0] [0 1] [1 0] [1 1] ] Testing on data: ( out: , [0.004 ] ) ( correct: , [0 ] ) error: 0.00000795 ( out: , [0.997 ] ) ( correct: , [1 ] ) error: 0.00000380 ( out: , [0.996 ] ) ( correct: , [1 ] ) error: 0.00000826 ( out: , [0.004 ] ) ( correct: , [0 ] ) error: 0.00000829 ( All errors: , [7.94733477723902e-06, 3.798267582566822e-06, 8.260969076585322e -06, 8.286246525558165e-06]) ( Average error: , 7.073204490487332e-06) ( Max error: , 8.286246525558165e-06, Median error: , 8.260969076585322e-06)Advertisements