- Keras - Discussion
- Keras - Useful Resources
- Keras - Quick Guide
- Keras - Pre-Trained Models
- Keras - Real Time Prediction using ResNet Model
- Keras - Applications
- Keras - Time Series Prediction using LSTM RNN
- Keras - Regression Prediction using MPL
- Keras - Convolution Neural Network
- Keras - Model Evaluation and Prediction
- Keras - Model Compilation
- Keras - Models
- Keras - Customized Layer
- Keras - Layers
- Keras - Modules
- Keras - Deep learning
- Keras - Overview of Deep learning
- Keras - Backend Configuration
- Keras - Installation
- Keras - Introduction
- Keras - Home
Selected Reading
- Who is Who
- Computer Glossary
- HR Interview Questions
- Effective Resume Writing
- Questions and Answers
- UPSC IAS Exams Notes
Keras - Models
As learned earper, Keras model represents the actual neural network model. Keras provides a two mode to create the model, simple and easy to use Sequential API as well as more flexible and advanced Functional API. Let us learn now to create model using both Sequential and Functional API in this chapter.
Sequential
The core idea of Sequential API is simply arranging the Keras layers in a sequential order and so, it is called Sequential API. Most of the ANN also has layers in sequential order and the data flows from one layer to another layer in the given order until the data finally reaches the output layer.
A ANN model can be created by simply calpng Sequential() API as specified below −
from keras.models import Sequential model = Sequential()
Add layers
To add a layer, simply create a layer using Keras layer API and then pass the layer through add() function as specified below −
from keras.models import Sequential model = Sequential() input_layer = Dense(32, input_shape=(8,)) model.add(input_layer) hidden_layer = Dense(64, activation= relu ); model.add(hidden_layer) output_layer = Dense(8) model.add(output_layer)
Here, we have created one input layer, one hidden layer and one output layer.
Access the model
Keras provides few methods to get the model information pke layers, input data and output data. They are as follows −
model.layers − Returns all the layers of the model as pst.
>>> layers = model.layers >>> layers [ <keras.layers.core.Dense object at 0x000002C8C888B8D0>, <keras.layers.core.Dense object at 0x000002C8C888B7B8> <keras.layers.core.Dense object at 0x 000002C8C888B898> ]
model.inputs − Returns all the input tensors of the model as pst.
>>> inputs = model.inputs >>> inputs [<tf.Tensor dense_13_input:0 shape=(?, 8) dtype=float32>]
model.outputs − Returns all the output tensors of the model as pst.
>>> outputs = model.outputs >>> outputs <tf.Tensor dense_15/BiasAdd:0 shape=(?, 8) dtype=float32>]
model.get_weights − Returns all the weights as NumPy arrays.
model.set_weights(weight_numpy_array) − Set the weights of the model.
Seriapze the model
Keras provides methods to seriapze the model into object as well as json and load it again later. They are as follows −
get_config() − IReturns the model as an object.
config = model.get_config()
from_config() − It accept the model configuration object as argument and create the model accordingly.
new_model = Sequential.from_config(config)
to_json() − Returns the model as an json object.
>>> json_string = model.to_json() >>> json_string {"class_name": "Sequential", "config": {"name": "sequential_10", "layers": [{"class_name": "Dense", "config": {"name": "dense_13", "trainable": true, "batch_input_shape": [null, 8], "dtype": "float32", "units": 32, "activation": "pnear", "use_bias": true, "kernel_initiapzer": {"class_name": "Vari anceScapng", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initiapzer": {"class_name": "Zeros", "conf ig": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {" class_name": "Dense", "config": {"name": "dense_14", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kern el_initiapzer": {"class_name": "VarianceScapng", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initia pzer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint" : null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_15", "trainable": true, "dtype": "float32", "units": 8, "activation": "pnear", "use_bias": true, "kernel_initiapzer": {"class_name": "VarianceScapng", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": " uniform", "seed": null}}, "bias_initiapzer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_r egularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "keras_version": "2.2.5", "backend": "tensorflow"} >>>
model_from_json() − Accepts json representation of the model and create a new model.
from keras.models import model_from_json new_model = model_from_json(json_string)
to_yaml() − Returns the model as a yaml string.
>>> yaml_string = model.to_yaml() >>> yaml_string backend: tensorflow class_name: Sequential config: layers: - class_name: Dense config: activation: pnear activity_regular izer: null batch_input_shape: !!python/tuple - null - 8 bias_constraint: null bias_initiapzer: class_name : Zeros config: {} bias_regularizer: null dtype: float32 kernel_constraint: null kernel_initiapzer: cla ss_name: VarianceScapng config: distribution: uniform mode: fan_avg scale: 1.0 seed: null kernel_regularizer: null name: dense_13 trainable: true units: 32 use_bias: true - class_name: Dense config: activation: relu activity_regularizer: null bias_constraint: null bias_initiapzer: class_name: Zeros config : {} bias_regularizer: null dtype: float32 kernel_constraint: null kernel_initiapzer: class_name: VarianceScapn g config: distribution: uniform mode: fan_avg scale: 1.0 seed: null kernel_regularizer: nu ll name: dense_14 trainable: true units: 64 use_bias: true - class_name: Dense config: activation: pnear activity_regularizer: null bias_constraint: null bias_initiapzer: class_name: Zeros config: {} bias_regu larizer: null dtype: float32 kernel_constraint: null kernel_initiapzer: class_name: VarianceScapng config: distribution: uniform mode: fan_avg scale: 1.0 seed: null kernel_regularizer: null name: dense _15 trainable: true units: 8 use_bias: true name: sequential_10 keras_version: 2.2.5 >>>
model_from_yaml() − Accepts yaml representation of the model and create a new model.
from keras.models import model_from_yaml new_model = model_from_yaml(yaml_string)
Summarise the model
Understanding the model is very important phase to properly use it for training and prediction purposes. Keras provides a simple method, summary to get the full information about the model and its layers.
A summary of the model created in the previous section is as follows −
>>> model.summary() Model: "sequential_10" _________________________________________________________________ Layer (type) Output Shape Param #================================================================ dense_13 (Dense) (None, 32) 288 _________________________________________________________________ dense_14 (Dense) (None, 64) 2112 _________________________________________________________________ dense_15 (Dense) (None, 8) 520 ================================================================= Total params: 2,920 Trainable params: 2,920 Non-trainable params: 0 _________________________________________________________________ >>>
Train and Predict the model
Model provides function for training, evaluation and prediction process. They are as follows −
compile − Configure the learning process of the model
fit − Train the model using the training data
evaluate − Evaluate the model using the test data
predict − Predict the results for new input.
Functional API
Sequential API is used to create models layer-by-layer. Functional API is an alternative approach of creating more complex models. Functional model, you can define multiple input or output that share layers. First, we create an instance for model and connecting to the layers to access input and output to the model. This section explains about functional model in brief.
Create a model
Import an input layer using the below module −
>>> from keras.layers import Input
Now, create an input layer specifying input dimension shape for the model using the below code −
>>> data = Input(shape=(2,3))
Define layer for the input using the below module −
>>> from keras.layers import Dense
Add Dense layer for the input using the below pne of code −
>>> layer = Dense(2)(data) >>> print(layer) Tensor("dense_1/add:0", shape =(?, 2, 2), dtype = float32)
Define model using the below module −
from keras.models import Model
Create a model in functional way by specifying both input and output layer −
model = Model(inputs = data, outputs = layer)
The complete code to create a simple model is shown below −
from keras.layers import Input from keras.models import Model from keras.layers import Dense data = Input(shape=(2,3)) layer = Dense(2)(data) model = Model(inputs=data,outputs=layer) model.summary() _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_2 (InputLayer) (None, 2, 3) 0 _________________________________________________________________ dense_2 (Dense) (None, 2, 2) 8 ================================================================= Total params: 8 Trainable params: 8 Non-trainable params: 0 _________________________________________________________________Advertisements